This is a timeline showing the execution status of the threads comprising the Process Scheduling
Programming Assignment. Green means a thread is running, rec means sleeping, means runnable,
but not yet selected bythe JVM to run.

Event

program starts
parse input file
create simulator
create submittor

start simulator&submittor sleep for 1st delay

Job1 to arrive

Job1 starts running

Job2 arrives

Job1 completes

Job2 starts running

Job2 completes

Submittor System Simulator(SS)

R empty, so sleep

SS.AddNewlJob(){
create new Job and
add toR
interrupt SS }
sleep for 2nd delay

|
_

job running?
no, so is job in R?
yes, so remove
and start() it
back to sleep

SS.AddNewlJob(){
create new Job and
add toR
interrupt SS }
sleep for 3rd delay

|
_

job running?
yes, so sleep()

job running?
no, so is job in R?
yes, so remove
and start() it
back to sleep

job running?
no, so is job in R?
no, FLAG not set

Jobs

Jobs must sleep or yield()
regularly so as to allow
Simulator to get CPU
cycles if it is interrupted
and to allow Submittor
CPU cycles when it
awakes. That's why this
graph sometimes portrays
Jobs and the Simulator
and Submittor running
"simultaneously"

Job #1 runs

call SS.Exit() which
eventually results
in a call to
interrupt()

Job #2 runs

call SS.Exit() which
eventually results
in a call to
interrupt()

Job3 to arrive SS.AddNewlJob(){
create new Job and
addtoR

so....back to sleep

interrupt SS } —

sleep for 4th delay

Job3 starts running

job4 to arrive SS.AddNewJob(){
create new Job and
add toR
interrupt SS }
no more jobs are to
arrive so set FLAG
and
(Submittor terminates) terminate

job3 terminates

job4 terminates

(Simulator terminates)

job running?
no, so is job in R?
yes, so remove
and start() it
back to sleep

. - o

job running?
yes, so sleep()

job running?
no, so is job in R?
yes, so remove
and start() it
back to sleep

job running?
no, so is job in R?
no, but FLAG is set,
so this thread
terminates

call SS.Exit() which
eventually results
in a call to
interrupt()

Job #4 runs

call SS.Exit() which
eventually results
in a call to
interrupt()

