
1

Programming with OpenGL
Part 2: Complete Programs

Matthew Evett
Dept. Computer Science
Eastern Michigan Univ.

2Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Objectives

•Refine the first program
- Alter the default values
- Introduce a standard program structure

•Simple viewing
- Two-dimensional viewing as a special case of

three-dimensional viewing

•Fundamental OpenGL primitives
•Attributes

3Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Program Structure

• Most OpenGL programs have a similar structure
that consists of the following functions
-main():

• defines the callback functions
• opens one or more windows with the required properties
• enters event loop (last executable statement)

-init(): sets the state variables
• viewing
• Attributes

- callbacks
• Display function
• Input and window functions

4Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Simple.c revisited

• In this version, we will see the same
output but have defined all the relevant
state values through function calls with
the default values

• In particular, we set
- Colors
- Viewing conditions
- Window properties

5Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

main.c

#include <GL/glut.h>

int main(int argc, char** argv)
{
glutInit(&argc,argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
glutInitWindowSize(500,500);
glutInitWindowPosition(0,0);
glutCreateWindow("simple");
glutDisplayFunc(mydisplay);

init();

glutMainLoop();
}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

6Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

GLUT functions

•glutInit allows application to get command line
arguments and initializes system

•gluInitDisplayMode requests properties of the
window (the rendering context)

- RGB color
- Single buffering
- Properties logically ORed together

•glutWindowSize in pixels
•glutWindowPosition from top-left corner of display
•glutCreateWindow create window with title “simple”
•glutDisplayFunc display callback
•glutMainLoop enter infinite event loop

“Glu” is
GL utility

2

7Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

init.c

void init()
{
glClearColor (0.0, 0.0, 0.0, 1.0);

glColor3f(1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

black clear color
opaque window

fill with white

viewing volume

8Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Coordinate Systems

•The units of in glVertex are determined by
the application and are called world or
problem coordinates

•The viewing specifications are also in world
coordinates and it is the size of the viewing
volume that determines what will appear in
the image

• Internally, OpenGL will convert to camera
coordinates and later to screen coordinates

9Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

OpenGL Camera

•OpenGL places a camera at the origin
pointing in the negative z direction

•The default viewing volume
is a box centered at the
origin with a side of
length 2

10Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Orthographic Viewing

z=0

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

11Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Transformations and Viewing

• In OpenGL, the projection is carried out by a
projection matrix (transformation)

• There is only one set of transformation functions
so we must set the matrix mode first
glMatrixMode (GL_PROJECTION)

• Transformation functions are incremental so we
start with an identity matrix and alter it with a
projection matrix that gives the view volume
glLoadIdentity ();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

12Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Two- and three-
dimensional viewing

• In glOrtho(left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

• Two-dimensional vertex commands place all vertices
in the plane z=0

• If the application is in two dimensions, we can use the
function
gluOrtho2D(left, right,bottom,top)

• In two dimensions, the view or clipping volume
becomes a clipping window

3

13Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

mydisplay.c

void mydisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();
glFlush();

}

14Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

OpenGL Primitives

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOP

GL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

15Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Polygon Issues

• OpenGL will only display polygons correctly that are
- Simple: edges cannot cross
- Convex: All points on line segment between two

points in a polygon are also in the polygon
- Flat: all vertices are in the same plane

• User program must check if above true
• Triangles satisfy all conditions

nonsimple polygon nonconvex polygon
16Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Attributes

•Attributes are part of the OpenGL and
determine the appearance of objects

- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges

17Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

RGB color

• Each color component stored separately in the
frame buffer

• Usually 8 bits per component in buffer
• Note in glColor3f the color values range from
0.0 (none) to 1.0 (all), while in glColor3ub the
values range from 0 to 255

18Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Indexed Color

•Colors are indices into tables of RGB values
•Requires less memory

- indices usually 8 bits
- (not as important as when OpenGL was formed)

• Memory inexpensive
• Need more colors for shading

4

19Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Color and State

• The color as set by glColor becomes part of the
state and will be used until changed

- Colors and other attributes are not part of the
object but are assigned when the object is
rendered

• We can create conceptual vertex colors by code
such as

glColor
glVertex
glColor
glVertex

20Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Smooth Color

• Default is smooth shading
- OpenGL interpolates vertex colors across

visible polygons
• Alternative is flat shading

- Color of first vertex
determines fill color

•glShadeModel
(GL_SMOOTH)
or GL_FLAT

21Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Viewports

•Do not have use the entire window for the
image: glViewport(x,y,w,h)

•Values in pixels (screen coordinates)

