
Dynamic Documents via
Javascript

Matt Evett
Dept. Computer Science
Eastern Michigan Univ.

Javascript, ©Matt Evett & Addison Wesley

Introduction
A dynamic HTML document is one whose tag
attributes, tag contents, or element style
properties can be changed after the document
has been and is still being displayed by a
browser
We will discuss only W3C standard approaches
Most of the examples use the DOM 0 event
model so as to work with both IE6 and NS6
To make changes in a document, a script must
be able to address the elements of the
document using the DOM addresses of those
elements

Javascript, ©Matt Evett & Addison Wesley

Element Positioning &
CSS-P

HTML tables can be used for element
positioning, but they lack flexibility and are
slow to render
CSS-P (“p” for “positioning”)

CSS-P was released by W3C in 1997
CSS-P allows us to place any element anywhere on
the display, and move it later
The position of any element can be dictated by the
three style properties: position, left, and top
The three possible values of position are: absolute,
relative, and static

Javascript, ©Matt Evett & Addison Wesley

Element Positioning (cont)
Absolute Positioning
<p style = "position: absolute;
left: 50px; top: 100px;">

SEE: absPos.html and Figure 6.1
If an element is nested inside another
element and is absolutely positioned,
the top and left properties are relative
to the enclosing element

SEE: absPos2.html and Figure 6.2

Javascript, ©Matt Evett & Addison Wesley

Relative Positioning
Relative Positioning

If no top and left properties are specified, the
element is placed exactly where it would have been
placed if no position property were given
It can be moved later

If top and left properties are given, the object
is offset from where it would have placed
without the position properties being specified
If negative values are given for top and left,
the displacement is upward and to the left

Can make superscripts and subscripts
--> SHOW relPos.html & Figure 6.3. Note
differences in vertical alignments

Javascript, ©Matt Evett & Addison Wesley

Static & Moveable
Positioning

Static positioning is the default, if position is
not specified

Neither top nor left can be initially set, nor can they
be changed later

Moving Elements
If position is set to either absolute or relative, the
element can be moved after it is displayed
Just change the top and left property values with a
script

--> SEE: mover.html & Figures 6.4 and 6.5

Javascript, ©Matt Evett & Addison Wesley

Element Visibility

The visibility property of an element controls whether it
is displayed
The values are visible and hidden
Ex: Suppose we want to toggle between hidden and
visible, and the element’s DOM address is dom

if (dom.visibility == "visible"
dom.visibility = "hidden";

else
dom.visibility = "visible";

--> SHOW showHide.html
Note that hidden elements are still allocated space.

6.5 Changing Colors and Fonts

- Background color is controlled by the
backgroundColor property

- Foreground color is controlled by the color
property

- Can use a function to change these two properties

- Let the user input colors through text buttons

- Have the text elements call the function with the
element address (its name) and the new color

Background color:
<input type = "text" size = "10"

name = "background"
onchange = "setColor('background',

this.value)">

- The actual parameter this.value works because
at the time of the call, this is a reference to the

Javascript, ©Matt Evett & Addison Wesley

Changing Colors and Fonts
Background color is controlled by the backgroundColor
property
Foreground color is controlled by the color property

Can use a function to change these two properties
Let the user input colors through text buttons
Have the text elements call the function with the element
address (its name) and the new color

Background color:
<input type = "text" size = "10" name = "background"

onchange = "setColor('background', this.value)">
The actual parameter this.value works because at the time of
the call, this is a reference to the text box (the element in
which the call is made)

So, this.value is the name of the new color

SHOW dynColors.html

Javascript, ©Matt Evett & Addison Wesley

Dynamic Colors and Fonts
Changing fonts

We can change the font properties of a link by using the
mouseover and mouseout events to trigger a script that
makes the changes
In this case, we can assign the complete script to make the
changes to the element’s attribute (in the HTML):

onmouseover = "this.style.color = 'blue';
this.style.font = 'italic 16pt Times';"

onmouseout = "this.style.color = 'black';
this.style.font = 'normal 16pt Times';”

SHOW dynLink.html

Javascript, ©Matt Evett & Addison Wesley

Dynamic Content

The content of an HTML element is
addressed with the value property
of its associated javaScript object

SHOW dynValue.html

Javascript, ©Matt Evett & Addison Wesley

Stacking Elements
The top and left properties determine the
position of an element on the display screen,
which is a two-dimensional device
We can create the appearance of a third
dimension by having overlapping elements, one
of which covers the others (like windows)
This is done with the zIndex property, which
determines which element is in front and which
are covered by the front element
The stacking order can be changed dynamically

Javascript, ©Matt Evett & Addison Wesley

Stacking Example
Make the elements anchors, so they respond to mouse
clicking

The href attribute can be set to call a JavaScript function
by assigning it the call, with 'JAVASCRIPT' attached to the
call code:

The handler function (“fun”, here) must change the
zIndex value of the element

A call to the function from an element sets the zIndex
value of the new top element to 10 and the zIndex value of
the old top element to 0
It also sets a variable (currentTop) to refernce to “top”
element

SHOW stacking.html

Javascript, ©Matt Evett & Addison Wesley

Locating the Mouse Cursor
The coordinates of the element that causes an
event are available in the clientX and clientY
properties of the event object

These are relative to upper left corner of the browser
display window

screenX and screenY are relative to the upper
left corner of the whole client screen
- If we want to locate the mouse cursor when
the mouse button is clicked, we can use the
click event
SEE where.html

Javascript, ©Matt Evett & Addison Wesley

Reacting to a Mouse Click

A mouse click can be used to trigger an
action, no matter where the mouse
cursor is in the display
Use event handlers for onmousedown
and onmouseup for the document
object to effect the action.

In the example, the action is to change the
visibility attribute of a message

SEE anywhere.html

Javascript, ©Matt Evett & Addison Wesley

Slow Movement of Elements

To animate an element, it must be
moved by small amounts, many times,
in rapid succession
JavaScript has two ways to do this, but
we cover just one:

setTimeout("fun()", n)
fun() is called, then a delay of n
milliseconds, then repeat the call

Javascript, ©Matt Evett & Addison Wesley

Slow Movement Example
Example: move a text element from its initial position
(100, 100) to a new position (300, 300)
Use the onload attribute of the body element to initialize
the position of the element (via its top and left
attributes)
Repeatedly call a function (“moveText”) to change top
and left by one pixel in the direction of the destination
A problem: coordinate properties are stored as strings,
which include the units ("150px")

So, to do addition or subtraction with the coordinate
properties, we must convert them to just numbers; the
units must be replaced before the properties are used
Use pattern matching to strip off the “px”

Javascript, ©Matt Evett & Addison Wesley

Possible Problems
Another problem: We need to use some HTML special
characters (‘<‘ and ‘--’)

We’ve avoided this problem before by placing these
characters in html comments. But we might want our
pages to be readable by XHTML parsers
XML parsers may remove all comments
Put the script in a CDATA section (but this wouldn’t be
readable by an HTML parser)
A solution: Put JavaScript in separate file, and reference it
via the src attribute of the script element

These are problems of validation only (the W3C html
validator disallows these characters in XHTML docs)
Both IE6 and NS6 deal correctly with commented HTML
special-characters
SHOW moveText.html

Javascript, ©Matt Evett & Addison Wesley

Dragging and Dropping
We can use mouseup, mousedown, and
mousemove events to grab, drag, and drop
Example: magnetic poetry (dragNDrop.html)

Two static lines of text and a collection of “words”
that the user can click & drag

We use both DOM 0 and DOM 2 models:
DOM 0 to call the mousedown handler, “grabber”
The DOM 2 event model is required (the Event object
and its property, currentTarget, to identify which
“word” was clicked upon.)

We use three functions: grabber, mover, and
dropper

Javascript, ©Matt Evett & Addison Wesley

Drag & Drop, 1st Handler
1. Get a reference to the element to be moved,
i.e. to the element under the cursor when the
mouse button is pressed down (in the
onmousedown handler)
We can get the id of an element on which an
event occurs with the srcElement property of
an event object; srcElement has a property
named id

event.srcElement.id
= the id of the element on which the event occurred
So we use this in the handler
The handler also registers handlers for mousemove
and mouseup…

Javascript, ©Matt Evett & Addison Wesley

Drag & Drop, 2nd and 3rd

Handlers
2. Move the element by changing its top
and left properties as the mouse cursor
is moved (onmousemove)

Use event.x and event.y to track the mouse
cursor

3. Dropping the element when the
mouse button is released by
unregistering these two handlers.

SEE dragNDrop.html

