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Names (Identifiers)
• Design issues

– Maximum length?
– Are connector characters allowed?
– Are names case sensitive?
– Are special words reserved words or keywords?

• Length
– FORTRAN I: maximum 6
–  COBOL: maximum 30
–  FORTRAN 90 and ANSI C: maximum 31
–  Ada: no limit, and all are significant
–  C++: no limit, but implementors often impose one

• Connectors
–  Pascal, Modula-2, and FORTRAN 77 don't allow

–  Others do

Identifier Case Sensitivity

• Disadvantage: readability (names that look alike
are different)

•  worse in Modula-2 because predefined names
are mixed case (e.g. WriteCard)

• C, C++, Java, and Modula-2 names are case
sensitive

•  The names in other languages are not

Special Identifiers

• Def: A keyword is a word that is special only in
certain contexts
– Example: Fortran’s  REAL APPLE   vs.  REAL = 3.4
–  Disadvantage: poor readability

• Def: A reserved word is a special word that
cannot be used as a user-defined name

– C’s switch, case, etc.

Variables

• A variable is an abstraction of a memory
cell

• Variables can be characterized as a sextuple
of attributes:
– name, address, value, type, lifetime, and scope

– Name - not all variables have them

– Address - the memory address with which it is
associated.

– Value - the contents of the location with which
the variable is associated

Addresses
• Abstract memory cell - the physical cell or

collection of cells associated with a variable
– The l-value of a variable is its address
– The r-value of a variable is its value

• A variable may have different addresses at
different times during execution.

• A variable may have different addresses at
different places in a program

• If two variable names can be used to access
the same memory location, they are called
aliases



Aliases

• Creating aliases:
– Pointers, reference variables, Pascal variant

records, C and C++ unions, and FORTRAN
EQUIVALENCE (and through parameters -
discussed in Ch 8)

• Some of the original justifications for
aliases are no longer valid; e.g. memory
reuse in FORTRAN.  Replace them with
dynamic allocation

Variable Type & Value

• Determines the range of values of variables
and the set of operations that are defined for
values of that type; in the case of floating
point, type also determines the precision

Binding

• Def: A binding is an association, such as
between an attribute and an entity, or
between an operation and a symbol

• Def: Binding time is the time at which a
binding takes place.

Binding Times

• Language design time--e.g., bind operator symbols
to operations

• Language implementation time--e.g., bind floating
point type to an internal representation

• Compile time--e.g., bind a variable to a type in C
or Java

• Load time--e.g., bind a FORTRAN 77 variable to
a memory cell (or a C static variable)

• Runtime--e.g., bind a nonstatic local variable to a
memory cell

Types of Bindings

• Def: A binding is static if it occurs before
run time and remains unchanged throughout
program execution.

• Def: A binding is dynamic if it occurs
during execution or can change during
execution of the program.

Typing Variables

• Type Bindings
– How is a type specified?

– When does the binding take place?
• If static, type may be specified by either an explicit

or an implicit declaration

–  Def: An explicit declaration is a statement
used for declaring the types of variables

– Def: An implicit declaration is a default
mechanism for specifying types of variables (at
the their first appearance in program)



  Example Typing

•  FORTRAN, PL/I, BASIC, and Perl provide
implicit declarations
– Advantage: writability

– Disadvantage: reliability (less trouble with Perl)
• First char = $ for scalar, @ for array, etc.

Dynamic Type Binding

• Specified through an assignment statement
– e.g. APL:   LIST ⇐  2 4 6 8  vs. LIST ⇐  17.3

– E.g. Lisp:  (setq bob “hi”)  vs. (setq bob 3)

•  Advantage: flexibility (generic program
units)

•  Disadvantages:
– High cost (dynamic type checking and

interpretation)

– Type error detection by the compiler is difficult

Dynamic Binding via Inference

• Type Inferencing (e.g. ML, Miranda, and
Haskell)
– Rather than by assignment statement, types are

determined from the context of the reference

– E.g. ML: fun circ(r) = 3.1415 * r * r

– E.g. ML: fun circ(r) = 10 * r * r

Storage Bindings

• Keeping track of binding of variables to
their memory cells.

• Allocation - getting a cell from some pool
of available cells

• Deallocation - putting a cell back into the
pool

• Def: The lifetime of a variable is the time
during which it is bound to a particular
memory cell

Categories of Variables

• To speak of storage bindings, it is useful to
categorize variables by their lifetimes:
– Inefficient, because all attributes are dynamic

– Loss of error detection

– Static

– Stack-dynamic

– Explicit heap-dynamic

– Implicit heap-dynamic

Static Variables

• Bound to memory cells before execution
begins and remains bound to the same
memory cell throughout execution.
– e.g. all FORTRAN 77 variables, C static

variables, global variables

• Advantage: efficiency  (direct addressing),
history-sensitive subprogram support

• Disadvantage: lack of flexibility  (no
recursion)



Stack-Dynamic Variables

– Storage bindings are created for vars when their
declaration statements are elaborated.

• If scalar, all attributes except address are statically
bound

• e.g. local variables in Pascal and C

– Advantage: allows recursion; conserves storage

– Disadvantages:
• Overhead of allocation and deallocation

• Subprograms cannot be history sensitive

• Inefficient references (indirect addressing)

Explicit Heap-Dynamic
Variables

• Allocated and deallocated by explicit
directives, specified by the programmer,
which take effect during execution
– Referenced only through pointers or references

– e.g. dynamic objects in C++ (via new and
delete),  all objects in Java

• Advantage: provides for dynamic storage
management

• Disadvantage: inefficient and unreliable

Implicit Heap-Dynamic
Variables

• Allocation and deallocation caused by
assignment statements.  I.e., when a
variable is assigned a value, its cell (and all
attributes) are allocated
– e.g. all variables in APL

• Advantage: flexibility

• Disadvantages:

Type Checking

 - Generalize the concept of operands and operators
   to include subprograms and assignments

 Def: Type checking is the activity of ensuring that
          the operands of an operator are of compatible
          types

 Def: A compatible type is one that is either legal for
         the operator, or is allowed under language
         rules to be implicitly converted, by compiler-
         generated code, to a legal type.  This automatic
         conversion is called a coercion.

Type Errors

• Def: A type error is the application of an
operator to an operand of an inappropriate
type
– If all type bindings are static, nearly all type

checking can be static

– If type bindings are dynamic, type checking
must be dynamic

• Def: A programming language is strongly
typed if type errors are always detected

Strong Typing
• Advantage: allows the detection of the

misuses of variables that result in type errors

• Languages:
– FORTRAN 77 is not: parameters, EQUIVALENCE

– Pascal is not: variant records

– Modula-2 is not: variant records, WORD type

– C and C++ are not: parameter type checking can be
avoided; unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION is
loophole) (Java is similar)

• Coercion rules can strongly weaken strong
typing (C++ vs Ada)



Dynamic Type Binding

• Advantage of dynamic type binding:
programming flexibility

• Disadvantages:
– efficiency

– late error detection (costs more)

• Ex: Lisp

Type Compatibility

• Def: Type compatibility by name means the
two variables have compatible types if they
are in either the same declaration or in
declarations that use the same type name
– Easy to implement but highly restrictive:

• Subranges of integer types are not compatible with
integer types

• If function parameters are to be a structure type, T,
that type must be declared in one, global location.
Can’t be declared in both formal and actual
parameter lists (e.g . Pascal)

Compatibility by Structure

• Def: Type compatibility by structure means
that two variables have compatible types if
their types have identical structures
– More flexible, but harder to implement

Problems with Structured Types
• Consider the problem of two structured

types:
– Suppose they are circularly defined

– Are two record types compatible if they are
structurally the same but use different field
names?

– Are two array types compatible if they are the
same except that the subscripts are different?
(e.g. [1..10] and [-5..4])

– Are two enumeration types compatible if their
components are spelled differently?

More Problems

• With structural type compatibility, you
cannot differentiate between types of the
same structure (e.g. different units of speed,
both float)
– See Mars Polar Explorer disaster!  Fall 1999.

Example Compatibility
• Language examples:

– Pascal: usually structure, but in some cases
name is used (formal parameters)

– C: structure, except for records

– C++: name

– Ada: restricted form of name
• Derived (sub-)types allow types with the same

structure to be different.
– type celsius is new FLOAT;

type fahrenheit is new FLOAT

• Anonymous types are all unique, even in:
A, B : array (1..10) of INTEGER:



Scope

• Def: The scope of a variable is the range of
statements over which it is visible.

• Def: The nonlocal variables of a program
unit are those that are visible but not
declared there.

• The scope rules of a language determine
how references to names are associated with
variables

Static Scope

• … is based on program text; syntax
– To connect a name reference to a variable, the

compiler must find the declaration.

– Search process: search declarations, first
locally, then in increasingly larger enclosing
scopes, until one is found for the given name.

•  Enclosing static scopes (to a specific scope)
are called its static ancestors; the nearest
static ancestor is called a static parent.

Nested Scopes

• Variables can be hidden (shadowed) from a
unit by having a "closer" variable with the
same name.
– I.e., identifier refers to the variable with that

name in the nearest static ancestor scope.

– C++, Lisp and Ada allow access to shadowed
variables.

• C++ uses scope operator “::”.  E.g: ::x accesses the
global variable, x, rather than the local variable x.

Creating static scopes

• Blocks - a method of creating static scopes
inside program units--from ALGOL 60

• Examples:
– C and C++:   “{” and “}”

for (...) { int index; … }

– Ada: “begin” and “end”
declare LCL : FLOAT;

       begin

               ...

       end

Evaluating Static Scopes
Consider the PASCAL-like example:
  Assume MAIN calls A and B
                 A calls C and D
                 B calls A and E
 
      
    MAIN
               A
                      C
              
                      D
              
               B
                      E

MAIN

        A                            B

C             D                       E

Scope tree

Lexical Program structure (A is def’d within
MAIN, etc.)

Evaluating Static Scopes (2)

• Graph of desired potential callability

• Graph of actual potential callability
– Danger!

main

A

C D

B

E

main

A

C D

B

E



Problems with Static Scoping

• Suppose the spec is changed so that D must
now access some data in B

• Solutions:
– Put D in B (but then C can no longer call it and

D cannot access A's variables)

– Move the data from B that D needs to MAIN
(but then all procedures can access them)

• Same problem for procedure access!

• Overall: static scoping often encourages
many globals (hack to provide access)

Dynamic Scope

• Based on program unit calling sequences,
not their textual layout
– temporal versus spatial scope resolution

• References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced
execution to this point.
– Lisp provides dynamic scoping via special

declarations

Example: Dynamic Scoping, Lisp
• The function FIND-BIGGEST takes a list of positive integers, and

returns a dotted pair consisting of the biggest and second-biggest
integers in the list. FIND-BIGGEST uses REDUCE in conjunction with
another function, BIGGESTYET, and a global variable (boo!!).

  (defvar second-biggest -1)  ; used in BIGGESTYET
  (defun find-biggest (L)
     (setq second-biggest -1)

     (let ((result (reduce #'biggestYet L)))
       (cons result second-biggest)))
  (defun biggestYet (a b)
     (let ((max (if (< a b) b a))
           (min (if (>= a b) a b)))
       (if (> min second-biggest)

         (setq second-biggest min))
       max))

USER(20): (find-biggest '(1 3 8 5 2 6 2))

   (8 . 6)

Example, (continued)

Now, we will use dynamic scoping (a SPECIAL variable) to solve
the same problem without a global variable. In effect, secondB
is like a "temporary" global variable, that exists only within
the lifetime of FIND-BIGGEST.

(defun find-biggest (L)
 (let ((secondB -1))
  (declare (special secondB))

  (let ((result (reduce #'biggestYet L)))
    (cons result secondB))))
(defun biggestYet (a b)
  (let ((max (if (< a b) b a))
        (min (if (< a b) a b)))

    (if (> min secondB)
      (setq secondB min))
    max))

Imperative ExampleExample:

    MAIN
     - declaration of x
     SUB1
       - declaration of x -
       ...
       call SUB2
       ...

     SUB2
       ...
       - reference to x -
       ...

     ...
     call SUB1
     ...

  

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's x

Evaluating Dynamic Scoping

• Evaluation of Dynamic Scoping:
– Advantage: convenience

– Disadvantage: poor readability

• Scope and lifetime are sometimes closely
related, but are different concepts!!
– Consider a static variable in a C or C++

function



Referencing Environments

• Def: The referencing environment of a
statement is the collection of all names that
are visible in the statement
– In a static scoped language, that is the local

variables plus all of the visible variables in all
of the enclosing scopes

– See book example (p. 184)

– A subprogram is active if its execution has
begun but has not yet terminated

Referencing Environments with
Dynamic Scoping

• In a dynamic-scoped language, the
referencing environment is the local
variables plus all visible variables in all
active subprograms
– See book example (p. 185)

Named Constants
• Def: A named constant is a variable bound to a

value only at time it is bound to storage

– Advantages: readability and modifiability

• The binding of values to named constants can be
either static (called manifest constants) or dynamic

• Languages:
– Pascal: literals only

– Modula-2 and FORTRAN 90: constant-valued
expressions

– Ada, C++, and Java: expressions of any kind

Variable Initialization

• Def: The binding of a variable to a value at
the time it is bound to storage is called
initialization

• Initialization is often done on the
declaration statement
– e.g., Ada

SUM : FLOAT := 0.0;

– C++:
int foo = 1;


